18 research outputs found

    Application of Fiber Ring for Protection of Passive Optical Infrastructure

    Get PDF
    Today, passive optical networks (PONs) are mostly used as modern high-speed access networks for various applications. However, there are also several specific applications, such as in business, office, army or science sector, which require a complex protection and backup system against failures and malfunctions. Typically, tree or star topologies are used for passive optical networks PONs. These topologies are vulnerable mainly against the failures of central optical line termination (OLT) unit. This paper presents an innovative method for protecting PONs by using ring topologies, especially the OLT unit. The method is described in the article, and an elementary mathematical model for calculations of asymmetric passive optical splitters together with an example is included as well

    Modeling of Transmission Functions and Crosstalk in Metallic Cables for Implementation of MIMO Concept

    Get PDF
    The new promising wireless networks based on multi-carrier modulations (MCM) and multiple-input multiple-output concept (MIMO) will soon offer high-speed digital connections. Their access points are mostly connected by fixed metallic lines to core data and telecommunication networks. That is why it will also be necessary to increase the transmission speed and overall performance of these fixed access networks adequately in order to meet the expected requirements of wireless connections. It would be possible to use VDSL2 digital subscriber lines and implement MIMO concept into the existing metallic networks for this purpose, but before that it will be necessary to solve several problems first. The transmission capacity of present VDSL2 digital lines is limited mainly by crosstalk occurring in metallic cables. This paper describes a new method for modeling of transmission functions and crosstalk in multi-pair and multi-quad metallic cables including its mathematical implementation, and it also gives an example of results obtained so far. The presented model is based on statistical evaluations of measured values, generation of pseudo-random components of frequency response and subsequent filtration process

    Multi-Carrier Modulation and MIMO Principle Application on Subscriber Lines

    Get PDF
    The multi-carrier modulation is used in many applications, primary for a wireless transmission, for example Wi-Fi and WiMAX networks or DVB-T. But the same physical principle can be used also for metallic lines in access or local networks, for example ADSL and VDSL. The multi-carrier modulation in these cases is called DMT. The dominant source of noise in multi-pair metallic cables is crosstalk when the information capacity is limited dramatically. However, information capacity of metallic lines can be increased, if the system is using MIMO principles, concrete VDMT modulation and line bounding concept. The methods for VDMT modulation and partial crosstalk cancellation are discussed and simulation results are presented

    Plexin-B2, but not Plexin-B1, critically modulates neuronal migration and patterning of the developing nervous system in vivo

    Full text link
    Semaphorins and their receptors, plexins, have emerged as important cellular cues regulating key developmental processes. B-type plexins directly regulate the actin cytoskeleton in a variety of cell types. Recently, B-type plexins have been shown to be expressed in striking patterns in the nervous system over critical developmental windows. However, in contrast to the well characterized plexin-A family, the functional role of plexin-B proteins in neural development and organogenesis in vertebrates in vivo is not known. Here, we have elucidated the functional contribution of the two neuronally expressed plexin-B proteins, Plexin-B1 or Plexin-B2, toward the development of the peripheral nervous system and the CNS by generating and analyzing constitutive knock-out mice. The development of the nervous system was found to be normal in mice lacking Plexin-B1, whereas mice lacking Plexin-B2 demonstrated defects in closure of the neural tube and a conspicuous disorganization of the embryonic brain. After analyzing mutant mice, which bypassed neural tube defects, we observed a key requirement for Plexin-B2 in proliferation and migration of granule cell precursors in the developing dentate gyrus, olfactory bulb, and cerebellum. Furthermore, we identified semaphorin 4C as a high-affinity ligand for Plexin-B2 in binding and functional assays. Semaphorin 4C stimulated activation of ErbB-2 and RhoA via Plexin-B2 and enhanced proliferation and migration of granule cell precursors. Semaphorin 4C-induced proliferation of ventricular zone neuroblasts was abrogated in mice lacking Plexin-B2. These genetic and functional analyses reveal a key requirement for Plexin-B2, but not Plexin-B1, in patterning of the vertebrate nervous system in vivo
    corecore